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Abstract

We study calibrated complex structures on the generalized tangent bundle of a Riemannian manifold
M and their relationship to the Riemannian geometry ofM. In particular we introduce a concept of
integrability of such structures and we prove that integrability conditions are strictly related to the
existence of certain Codazzi tensors onM.
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1. Introduction

Let M be a smooth manifold, letTM be the tangent bundle and letT ∗M be the cotangent
bundle; let us consider the generalized tangent bundle ofM : E = TM ⊕ T ∗M; E is, in a
natural way, a symplectic vector bundle overM. We are interested in to study calibrated
complex structures onE; we find that they are strictly related to the Riemannian geometry
of M, then this gives a method of translate problems fromTM to TM ⊕ T ∗M and, in this
sense, we are in the context of “Generalized Geometry”.
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We recall that the motivation of generalized geometry is to translate problems fromTM
to TM ⊕ T ∗M in order to work in a more general context, were it is possible to study
different problems from the same point of view. Examples are given by Dirac structures
and generalized complex structures.

Dirac structures were introduced by Weinstein and Courant in 1990 in order to unify
Poisson and pre-symplectic manifolds[2]; generalized complex structures were introduced
by Hitchin in [6], and further investigated by Gualtieri in[5], in order to unify symplectic
and complex geometry.

In this paper, after recalling the fundamental properties of the geometry ofE (Section2),
we introduce calibrated complex structures on this bundle and we prove that they correspond
to Riemannian metrics onM, g, with fixedg-symmetric operators onTM (Section3). Then,
using a natural bracket onE, defined by the Levi Civita connection of (M, g), we introduce
the concept of integrability and we compute explicitly integrability conditions. We find
that integrability is strictly related to the Codazzi’s tensors theory on (M, g). Precisely any
g-symmetric (1, 1) – tensor,H, on M such thatH andH2 are Codazzi tensors, defines an
integrable calibrated complex structure on the generalized tangent bundle ofM (Section4).
Moreover, in the case ofRn, with the canonical flat Riemannian metric, we are able to com-
pletely characterize the integrable calibrated complex structures ofE. Other interesting ex-
amples come from hypersurfaces isometrically embedded in spaces of constant Riemannian
sectional curvature, as, in this case, the second fundamental form is a Codazzi tensor (Sec-
tion5). Finally (Section6), given a calibrated complex structureJ onE, we associate toJ two
Lagrangian subbundles,L1,L2; we prove thatJ is integrable if and only if the sets of smooth
sections ofL1 andL2 are closed under the bracket onE defined by the Riemannian metric on
M defined byJ. In particular this remark insert our study in the context of Lie algebroids[8].

2. The geometry of TM ⊕ T ∗M

Let M be a smooth manifold of real dimensionn, in this section we introduce the basic
properties of the geometry ofTM ⊕ T ∗M and some concept of generalized geometry from
[2,6].

Let E = TM ⊕ T ∗M, sections ofE are elementsX + ξ ∈ C∞(E), whereX ∈ C∞(TM)
is a vector field andξ ∈ C∞(T ∗M) is a 1− form. E is equipped with a natural symplectic
structure:

(X + ξ, Y + η) := −1

2
(ξ(Y ) − η(X)) (1)

and a natural indefinite metric:

〈X + ξ, Y + η〉 := −1

2
(ξ(Y ) + η(X)) (2)

〈 , 〉 is non degenerate and of signature (n, n).
The Courant bracket is defined on sections ofE by

[X + ξ, Y + η]c := [X, Y ] + LXη − LY ξ + 1

2
d(ξ(Y ) − η(X)). (3)



A. Nannicini / Journal of Geometry and Physics 56 (2006) 903–916 905

whereL denotes Lie derivative d is the differential operator and [ , ] denotes the Lie bracket
of vector fields overM.

Now we recall some facts from[2,6].
A Dirac structure onM is a maximal isotropic subbundleL of E (with respect

to 〈 , 〉) such that the set of sections ofL, C∞(L), is closed under the Courant
bracket.

Examples of Dirac structures are given by symplectic manifolds (M, ω), namelyL =
graph(ω) satisfies the condition of Dirac structure.

A generalized complex structure on a real 2n-dimensional manifoldM is a maximal
isotropic subbundleL of E ⊗ C such thatL ∩ L̄ = {O} andC∞(L) is closed under the
Courant bracket.

Equivalently, a generalized complex structure can be defined as a complex structureJ
onE which is〈 , 〉 – orthogonal and such that the generalized Nijenhuis tensor ofJ defined
by the Courant bracket is 0. This integrability condition means that the±i – eigenbundles
L, L̄ of J must be closed under the Courant bracket.

Examples of generalized complex structures are given by symplectic manifolds (M, ω),
where, in block matrix form is

J =
(

O −ω−1

ω O

)
(4)

and by complex manifolds (M, J), where

J =
(

J O

O −J∗

)
(5)

with J∗(ξ)(Y ) := ξ(JY ).

3. Calibrated complex structures on TM ⊕ T ∗M

Starting from the point of view of generalized geometry introduced at the end of previous
section we study complex structuresJ on E which are ( , ) –calibrated, that is, such that,
for all σ, τ, ν ∈ C∞(E), ν 	= 0, the following conditions hold:

(Jσ, Jτ) = (σ, τ) (6)

(ν, Jν) > 0. (7)

Let g be a Riemannian metric onM, g defines, in a natural way, a complex structureJg

on E by

Jg(X + ξ) := −g−1(ξ) + g(X) (8)

whereg : TM → T ∗M is the bemolle musical isomorphism defined by

g(X)(Y ) := g(X, Y ). (9)

We have immediately the following:



906 A. Nannicini / Journal of Geometry and Physics 56 (2006) 903–916

Lemma 1. Jg is ( , ) – calibrated.

On the other hand, given a complex structureJ on E, ( , ) – calibrated, we can define a
Riemannian metric onM by

g(X, Y ) := 2(X, J(Y )). (10)

We are interested in to investigate relationship between Riemannian metrics onM and
( , ) – calibrated complex structures onE.

Let J : E → E be a ( , ) –calibrated complex structure,J can be written in block matrix
form as

J =
(

J1 J2

J3 J4

)
(11)

whereJ1 : TM → TM, J2 : T ∗M → TM, J3 : TM → T ∗M, J4 : T ∗M → T ∗M.

Written ( , ) in theblock matrix form

(
O I

−I O

)
and written down the conditions:




J2 = −I

(J, J) = ( , ),

( , J) > 0

(12)

a direct computation gives the following:

Lemma 2. J =
(

J1 J2

J3 J4

)
is ( , ) –calibrated if and only if the following conditions hold:




J3 = J∗
3

J3 > 0

J4 = −J∗
1

J3J1 = J∗
1J3

J2 = −J−1
3 (I + (J∗

1 )2)(
J3 J4

−J1 −J2

)
> 0.

(13)

Thus a ( , ) –calibrated complex structureJ onE can be written in the block matrix form:(
H −g−1(I + (H∗)2)

g −H∗

)
(14)

whereH : TM → TM is a g-symmetric operator,H∗ : T ∗M → T ∗M is the dual opera-
tor of H defined byH∗(ξ)(X) := ξ(H(X)), andg : TM → T ∗M is the bemolle musical
isomorphism of the Riemannian metricg on M defined byg(X, Y ) := 2(X, JY ).
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Let H be a matrix of typen × n, we form the 2n × 2n matrix

(
O H

O O

)
, then is

exp(H) =
(

I H

O I

)
.

FromLemma 2we get the following:

Proposition 3. J is a ( , ) – calibrated complex structure on E if and only if there
exist a Riemannian metric g on M and a g-symmetric operator H on TM such that
J = exp(Hg−1)Jg exp(−Hg−1).

Proof. Jg has the block matrix form

(
O −g−1

g O

)
and

(
H −g−1(I + (H∗)2)

g −H∗

)
=
(

I Hg−1

O I

)(
O −g−1

g O

)(
I −Hg−1

O I

)
(15)

then we have the statement.�

Previous results can be restated by the following:

Proposition 4. There is a 1–1 correspondence between Riemannian metrics on M and
classes of ( , ) – calibrated structures on E, described by

g�[J (g)] = {J : E → E|J = exp(Hg−1)Jg exp(−Hg−1)}. (16)

Equivalently:

Proposition 5. There is a 1–1 correspondence between ( , ) – calibrated structures on E
and Riemannian metrics g on M with a fixed g-symmetric operator, H, on TM:

J�(g, H). (17)

4. Integrability

In this section, we fix a Riemannian metricg on M then, by using the Levi Civita
connection associated tog, we introduce a bracket on sections ofE and we define the
concept of integrability of complex structures ofE.

Let (M, g) be a Riemannian manifold and let∇ be the Levi Civita connection,∇ defines
a bracket onE in the following way:

[X + ξ, Y + η]∇ := [X, Y ] + ∇Xη − ∇Y ξ (18)

where [ , ] is the Liebracket of vector fields onM.
We have the following:
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Lemma 6. [ , ]∇ satisfies the following properties: for all X, Y ∈ C∞(TM), for all ξ, η ∈
C∞(T ∗M) and for all f ∈ C∞(M)

1. [X + ξ, Y + η]∇ = −[Y + η, X + ξ]∇ ,

2. [f (X + ξ), Y + η]∇ = f [X + ξ, Y + η]∇ − Y (f )(X + ξ), moreover
3. Jacobi identity holds for [ , ]∇ if and only if the curvature, R, of ∇ vanishes.

Proof.

1. is evident;
2. [f (X + ξ), Y + η]∇ = [fX, Y ] + ∇fXη − ∇Yfξ = f [X, Y ] − Y (f )X + f∇Xη −

Y (f )ξ − f∇Y ξ = f {[X, Y ] + ∇Xη − ∇Y ξ} − Y (f )(X + ξ);
3. [[X + ξ, Y + η]∇ , Z + ζ]∇ + [[Y + η, Z + ζ]∇ , X + ξ]∇ + [[Z + ζ, X + ξ]∇ , Y +

η]∇ = [[X, Y ], Z] + ∇[X,Y ]ζ − ∇Z∇Xη + ∇Z∇Y ξ + [[Y, Z], X] + ∇[Y,Z]ξ −
∇X∇Y ζ + ∇X∇Zη + [[Z, X], Y ] + ∇[Z,X]η − ∇Y∇Zξ + ∇Y∇Xζ = −R(X, Y )ζ −
R(Z, X)η − R(Y, Z)ξ = −{ζ(R(X, Y )·) + η(R(Z, X)·) + ξ(R(Y, Z)·)}. �

Now remember that given a complex structureJ on E the ±i – eigenbundles ofJ are
subbundles ofE ⊗ C and the projection operators,P+, P−, are defined by

P± := 1

2
(I ∓ iJ). (19)

We pose the following:

Definition 7. J is integrable if and only if its eigenbundles are involutive with respect to
[ , ]∇ , that is if and only if for allσ, τ ∈ C∞(E) we have:

P∓[P±(σ), P±(τ)]∇ = 0. (20)

We have:

Lemma 8. Let J be a complex structure on E and let

N(J) : C∞(E) × C∞(E) → C∞(E) (21)

defined by

N(J)(σ, τ) := [Jσ, Jτ]∇ − J [Jσ, τ]∇ − J [σ, Jτ]∇ − [σ, τ]∇ (22)

for all σ, τ ∈ C∞(E); N(J) is an antisymmetric tensor which is called generalized Nijenhuis
tensor.

Proof. Let σ = X + ξ, τ = Y + η ∈ C∞(E) and letf ∈ C∞(M), denotedρ : E → TM

the map defined byρ(X + ξ) = X, we have:

N(J)(fσ, τ) := [Jfσ, Jτ]∇ − J [Jfσ, τ]∇ − J [fσ, Jτ]∇ − [fσ, τ]∇
= fN(J)(σ, τ) − ρ(Jτ)(f )Jσ + J(ρ(τ))(f )Jσ + J(ρ(Jτ))(f )σ

+ρ(τ)(f )σ = fN(J)(σ, τ);

the antisymmetric property follows from the antisymmetry of the bracket.�
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The following holds:

Lemma 9. P∓[P±(σ), P±(τ)]∇ = −1
4P∓(N(J)(σ, τ)).

Proof. We have:

P∓[P±(σ), P±(τ)]∇ = 1

2
{[P±(σ), P±(τ)]∇ ± iJ [P±(σ), P±(τ)]∇}

= 1

8
{[σ ∓ iJσ, τ ∓ iJτ]∇ ± iJ [σ ∓ iJσ, τ ∓ iJτ]∇}

= 1

8
{[σ, τ]∇ ∓ i[Jσ, τ]∇ ∓ i[σ, Jτ]∇ − [Jσ, Jτ]∇}

±1

8
i{J [σ, τ]∇ ∓ iJ [Jσ, τ]∇ ∓ iJ [σ, Jτ]∇ − J [Jσ, Jτ]∇}

= −1

8
(N(J)(σ, τ) ± iJN(J)(σ, τ))

= −1

4
P∓(N(J)(σ, τ)). �

Then we get:

Corollary 10. J is integrable if and only if N(J) = 0.

Before to investigate integrability conditions we recall the following definition[1]:

Definition 11. A symmetric two tensor fieldh on a Riemannian manifold (M, g) will be
called a Codazzi tensor ifh satisfies the Codazzi equation:

(∇Xh)(Y, Z) = (∇Yh)(X, Z) (23)

for all X, Y, Z tangent vectors.

In the following we will identify the endomorphismsH andH2 of TM with the corre-
sponding (2, 0) – tensorsh andh2 defined, respectively, by

h(X, Y ) = g(H(X), Y ) (24)

and

h2(X, Y ) = g(H2(X), Y ). (25)

In particular we say thatH andH2 are Codazzi tensors if and only ifh andh2 are Codazzi
tensors.

We have immediately the following:

Lemma 12. H is a Codazzi tensor if and only if:

(∇XH)Y − (∇YH)X = 0. (26)
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Let J ∈ [J (g)], from (14), we have:

(27)

for someg-symmetric operatorH : TM → TM and we get:

Proposition 13. N(J)(X, Y ) ∈ C∞(TM) for all X, Y ∈ C∞(TM) if and only if H is a
Codazzi tensor.

Proof. Let X, Y ∈ C∞(TM), denote:

N(J)(X, Y ) := Z + ζ

whereZ ∈ C∞(TM) andζ ∈ C∞(T ∗M), we have:

ζ = ∇H(X)g(Y ) − ∇H(Y )g(X) − g[H(X), Y ] − H∗∇Yg(X) ± g[X, H(Y )]

+ H∗∇Xg(Y ) = −g{∇XH(Y ) − ∇YH(X) + H∇YX − H∇XY}
= − g((∇XH)Y − (∇YH)X)

thenζ = 0 if and only if (∇XH)Y = (∇YH)X and this gives the statement.�

Moreover:

Proposition 14. J is integrable if and only if for all X, Y ∈ C∞(TM) the following condi-
tions are satisfied:{

(∇XH)Y − (∇YH)X = 0

(∇H(X)H)Y − (∇H(Y )H)X = 0.
(28)

Proof. Let X, Y ∈ C∞(TM) let us compute:

N(J)(X, Y ) = (∇H(X)H)Y−(∇H(Y )H)X − H((∇XH)Y − (∇YH)X) ± g((∇XH)Y

− g(∇YH)X),

N(J)(X, g(Y )) = −(∇XH)Y + (∇YH)X + H((∇XH)(H(Y )) + (∇H2(Y )H)X

− (∇H(X)H
2)Y + g((∇XH)H(Y ) − (∇H(X)H)Y,

N(J)(g(X), g(Y )) = H((∇XH)Y ) + (∇XH)H(Y ) − H((∇YH)X) ± (∇YH)H(X)

+ (∇H(H(X))H)H(Y ) − (∇H(H(Y ))H)H(X) + H(∇HH(X))H)Y

− (∇H(H(Y ))H)X) + g((∇XH)(Y ) + (∇H2XH)(Y ) − (∇YH)(X)

− (∇H2YH)(X));

then it is easily seen thatN(J) = 0 if and only if the conditions in the statement are
satisfied. �
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Using the identity:

(∇XH2)(Y ) = (∇XH)(H(Y )) + H(∇XH)(Y ) (29)

we can restateProposition 15as in the following:

Proposition 15. J is integrable if and only if for all X, Y ∈ C∞(TM) the following condi-
tions are satisfied:

(30)

In particular we get:

Proposition 16. J is integrable if and only if H an H2 are Codazzi tensors.

5. Examples

In this section we will describe some examples.

5.1. The case of Rn

Let us consider the case ofRn with the standard flat Riemannian metric,go. It is well
known[4] that a symmetric (2, 0) – tensor,h, on (Rn, go) is a Codazzi tensor if and only if
there existsf ∈ C∞(Rn) such that

h = Hess(f ). (31)

Then, givenf ∈ C∞(Rn), h = Hess(f ) defines an integrable complex structureJ = JH

on TRn ⊕ T ∗
R

n, as described in(27), if and only if we haveh2 = Hess(φ) for some
φ ∈ C∞(Rn), that is if and only if, for anyi, j = 1, . . . , n, it results:

∂2φ

∂xi∂xj

=
n∑

k=1

∂2f

∂xi∂xk

∂2f

∂xk∂xj

. (32)

This remark allows us to write down explicitly a lot of examples of non parallelH that
define integrable calibrated complex structuresJH on E.

For sake of simplicity, in the following, we will consider the casen = 2 and we will
illustrate two examples.

As first example we have:

Proposition 17. Let

f

(
x

y

)
= (ax + by)k (33)
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with a, b ∈ R, a2 + b2 > 0, k ∈ N, k ≥ 3, and let h = Hess(f ), then the function

φ

(
x

y

)
= k2(k − 1)2(a2 + b2)

2(k − 2)(2k − 3)
(ax + by)2k−2 (34)

satisfies the condition: h2 = Hess(φ).

Proof. Let x, y be coordinates onR2, φ is a solution of following equations:


∂2φ

∂x2 =
(

∂2f

∂x2

)2

+
(

∂2f

∂x∂y

)2

∂2φ

∂x∂y
= ∂2f

∂x∂y

(
∂2f

∂x2 + ∂2f

∂y2

)

∂2φ

∂y2 =
(

∂2f

∂y2

)2

+
(

∂2f

∂x∂y

)2

(35)

that is


∂2φ

∂x2 = (k(k − 1))2a2(a2 + b2)(ax + by)2(k−2)

∂2φ

∂x∂y
= (k(k − 1))2ab(a2 + b2)(ax + by)2(k−2)

∂2φ

∂y2 = (k(k − 1))2b2(a2 + b2)(ax + by)2(k−2)

. (36)

Integrating twice each equation and comparing, we getφ. �
As second example we have:

Proposition 18. Let

f

(
x

y

)
= ax3 + bx2y + cxy2 + dy3 (37)

where a, b, c, d ∈ R, then h = Hess(f ) defines an integrable calibrated complex structure
on TR2 ⊕ T ∗

R
2 if and only if a, b, c, d satisfy the following condition:

b2 + c2 − 3ac − 3bd = 0. (38)

In this case the function:

φ

(
x

y

)
=
(

3a2 + b2

3

)
x4 + 2(b2 + c2)x2y2 + 4b

(
a + c

3

)
x3y

+ ac

(
d + b

3

)
y3x +

(
3d2 + c2

3

)
y4 (39)

satisfies the condition h2 = Hess(φ).
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Proof. In this caseφ is a solution of following equations:


∂2φ

∂x2 = 4(9a2 + b2)x2 + 4(b2 + c2)y2 + 8b(3a + c)xy

∂2φ

∂x∂y
= 4b(3a + c)x2 + 4c(b + 3d)y2 + 4(b2 + 3db + 3ac + c2)xy

∂2φ

∂y2 = 4(9d2 + c2)y2 + 4(b2 + c2)x2 + 8c(3d + b)xy

. (40)

Then the compatibility condition:

∂3φ

∂x2∂y
= ∂3φ

∂x∂y∂x
(41)

gives immediately:

b2 + c2 − 3ac − 3bd = 0. (42)

On the other hand, integrating directly previous equations with this condition, we
getφ. �

5.2. Submanifolds

Let (M, g) and (M̃, g̃) be Riemannian manifolds and letf : M → M̃ be an isometric
immersion; let∇ and∇̃ be the Levi Civita connection ofg andg̃, respectively, the second
fundamental form,h, of the immersion is defined on tangent vector fieldsX, Y , overM by

∇̃XY = ∇XY + h(X, Y ). (43)

Let υ be a vector field of the normal bundleTM⊥, let Hυ : TM → TM defined by

g(Hυ(X), (Y )) = g̃(h(X, Y ), υ) (44)

for all X, Y vector fields ofTM, Hυ is ag-symmetric operator onTM called shape operator.
From Codazzi equation,[3,7], it follows that if M̃ has constant Riemannian sectional

curvature thenHυ is a Codazzi tensor.
In particular the shape operator for totally geodesic or totally umbilic submanifolds gives

examples of integrable calibrated complex structures onE.
The Euclidean sphereSn ⊂ Rn+1 provides an example and, using results from[9], we get

that the shape operator of the Euclidean sphereSn, isometrically embedded as hypersurface
of an elliptic or a hyperbolic space, gives too an integrable complex structure onE.

In the caseM is a hypersurface ofRn+1, denotedH = Hυ, the following holds:

Ricci(X, Y ) = (traceH)g(H(X), Y ) − g(H(X), H(Y )). (45)

In particular, the operator onTM representing the third fundamental form,H2, is given
by

H2 = (traceH)H − S (46)

whereS is the operator onTM representing the Ricci tensor.
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This equation can be used to produce examples of integrable structures onE.

6. Lie algebroids

In this section, we define two Lagrangian subbundles ofE, associated to a calibrated
complex structure; we prove that in the case the structure is integrable they are Lie algebroids.

Let (M, g) be a Riemannian manifold, letg : TM → T ∗M be the bemolle isomorphism,
let H be ag-symmetric operator onTM and letJ = JH ∈ [J (g)] be the associated calibrated
complex structure onE. We define:

L1 = graph(g + gH) (47)

and

L2 = graph(g + gH2). (48)

We have the following:

Lemma 19. L1 andL2 are Lagrangian subbundles of E.

Proof. Let σ, τ be sections ofL1, we can write:

σ = X + g(X) + g(H(X)) (49)

and

τ = Y + g(Y ) + g(H(Y )) (50)

with X, Y ∈ C∞(TM). We have:

(σ, τ) = −1

2
(g(X) + g(H(X)))(Y ) − (g(Y ) + g(H(Y ))(X)) (51)

(σ, τ) = −1

2
(g(X, Y ) + g(H(X), Y ) − g(Y, X) − g(H(Y ), X)) (52)

(σ, τ) = 0. (53)

Analogously for sections ofL2, namely we have:

(X + g(X) + g(H2(X)), Y + g(Y ) + g(H2(Y ))) = 0 (54)

and thus the proof is complete.�

Now let ∇ be the Levi Civita connection ofg and let [ , ]∇ be the bracket onE defined
in Section4, denote byC∞(Li) the set of smooth sections ofLi, i = 1, 2, we have the
following:

Proposition 20. Let σ, τ ∈ C∞(L1), then [σ, τ]∇ ∈ C∞(L1) if and only if H is a Codazzi
tensor.
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Proof. Let us compute:

[σ, τ]∇ = [X + g(X) + g(H(X)), Y + g(Y ) + g(H(Y ))]∇
= [X, Y ] + g([X, Y ]) + g(H [X, Y ]) + (∇XH)(Y ) − (∇YH)(X)

then

[σ, τ]∇ ∈ C∞(L1) if ad only if (∇XH)(Y ) − (∇YH)(X) = 0,

which is the statement. �

Analogously forL2, we get:

Proposition 21. Let σ, τ ∈ C∞(L2), then [σ, τ]∇ ∈ C∞(L2) if and only if H2 is a Codazzi
tensor.

Proof. Repeat previous computation substitutingH2 to H. �

In particular previous results can be restated as in the following:

Proposition 22. C∞(L1) and C∞(L2) are closed with respect to [ , ]∇ if and only if J is
integrable.

We recall the definition of Lie algebroid:

Definition 23. A Lie algebroid on a smooth manifoldM is a vector bundleL overM such
that: a Lie bracket, [ , ], is defined onC∞(L), a smooth bundle mapρ : L → TM, called
anchor, is defined and, for allσ, τ ∈ C∞(L), for all f ∈ C∞(M), the following conditions
hold:

ρ([σ, τ]) = [ρ(σ), ρ(τ)] (55)

[fσ, τ] = f ([σ, τ]) − (ρ(τ)(f ))σ. (56)

Using previous notations for (M, g), J, L1, L2, we have the following:

Proposition 24. If J is an integrable calibrated complex structure on E then L1 and L2 are
Lie algebroids.

Proof. Let [ , ] = [ , ]∇ and letρ : Li → TM, i = 1, 2, be the projection defined by

ρ(X + g(X) + gHi(X)) := X, (57)

from Lemma 6, it is enough to verify that Jacobi identity holds for

[ , ]∇|C∞(Li).
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Forσ, τ, υ ∈ C∞(E), we denote:

Jac(σ, τ, υ) := [[σ, τ]∇ , υ]∇ + [[τ, υ]∇ , σ]∇ + [[υ, σ]∇ , τ]∇ , (58)

for X, Y, Z ∈ C∞(TM) is

Jac(X, Y, Z) := [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 (59)

Bianchi(X, Y, Z) := R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0; (60)

then, forσ, τ, υ ∈ C∞(Li), we have:

Jac(σ, τ, υ) = Jac(X, Y, Z) ± g(Bianchi(X, Y, Z) + R(X, Y )Hi(Z)

+ R(Y, Z)Hi(X) + R(Z, X)Hi(Y ))

= −g{R(X, Y )Hi(Z) + R(Y, Z)Hi(X) + R(Z, X)Hi(Y )}
= −g(∇X((∇YHi)(Z) − (∇ZHi)(Y )) + ∇Y ((∇ZHi)(X) − (∇XHi)(Z))

+ ∇Z((∇XHi)(Y ) − (∇YHi)(X)) + ((∇XHi)(∇YZ − ∇ZY )

− (∇[Y,Z]H
i)(X)) + −((∇YHi)(∇XZ − ∇ZX) − (∇[X,Z]H

i)(Y ))

± ((∇ZHi)(∇YX − ∇XY ) − (∇[Y,X]H
i)(Z))

− H(Bianchi(X, Y, Z))),

then the statement follows fromProposition 16. �

References

[1] A.L. Besse, Einstein manifolds, Erg. der Mat. und Ihrer Grenz., Fold 3 Band 10, Springer Verlag, 1987.
[2] T. Courant, Dirac manifolds, Trans. A.M.S. 319 (1990) 631–661.
[3] M. Dajczer, Submanifolds and isometric immersions, Math. Lecture Ser. 13 (1990).
[4] D. Ferus, A remark on Codazzi tensors in constant curvature spaces, L.N.M. 838 (1981) 257.
[5] M. Gualtieri, Generalized Complex Geometry, Ph.D. Thesis, Oxford University, 2003 (math.DG/0401221).
[6] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford 54 (2003) 281–308

(math.DG/0209099).
[7] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Interscience Tracts in Pure and Applied

Mathematics, no. 15, vols. I and II, John Wiley & Sons, 1969.
[8] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, vol. 124, London Math. Soc. L.N.S.

Cambridge Univ. Press, Cambridge, 1987.
[9] A. Nannicini, Rigidit̀a infinitesima di immersioni isometriche della sferaSn", B.U.M.I. Algebra e Geometria

series VI, vol. 1-D, n. 1, 1982.


	Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold
	Introduction
	The geometry of TMoplus T*M
	Calibrated complex structures on TMoplus T*M
	Integrability
	Examples
	The case of Rn
	Submanifolds

	Lie algebroids
	References


