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Abstract

We study calibrated complex structures on the generalized tangent bundle of a Riemannian manifold
M and their relationship to the Riemannian geometry/fofin particular we introduce a concept of
integrability of such structures and we prove that integrability conditions are strictly related to the
existence of certain Codazzi tensorsMn
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1. Introduction

Let M be a smooth manifold, |§tM be the tangent bundle and [Et M be the cotangent
bundle; let us consider the generalized tangent bundM oft = TM & T*M; E is, in a
natural way, a symplectic vector bundle owdr We are interested in to study calibrated
complex structures of; we find that they are strictly related to the Riemannian geometry
of M, then this gives a method of translate problems fivhto TM @ T*M and, in this
sense, we are in the context of “Generalized Geometry”.
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We recall that the motivation of generalized geometry is to translate problemgfvom
to TM @ T*M in order to work in a more general context, were it is possible to study
different problems from the same point of view. Examples are given by Dirac structures
and generalized complex structures.

Dirac structures were introduced by Weinstein and Courant in 1990 in order to unify
Poisson and pre-symplectic manifo[@%; generalized complex structures were introduced
by Hitchin in [6], and further investigated by Gualtieri [&], in order to unify symplectic
and complex geometry.

In this paper, after recalling the fundamental properties of the geomefirySction2),
we introduce calibrated complex structures on this bundle and we prove that they correspond
to Riemannian metrics o\, g, with fixed g-symmetric operators dfiVf (Section3). Then,
using a natural bracket dfy defined by the Levi Civita connection off, g), we introduce
the concept of integrability and we compute explicitly integrability conditions. We find
that integrability is strictly related to the Codazzi’s tensors theoryMing)). Precisely any
g-symmetric (11) — tensorH, on M such thatd and H2 are Codazzi tensors, defines an
integrable calibrated complex structure on the generalized tangent buidigSetctiord).
Moreover, in the case @®”, with the canonical flat Riemannian metric, we are able to com-
pletely characterize the integrable calibrated complex structugs@ther interesting ex-
amples come from hypersurfaces isometrically embedded in spaces of constant Riemannian
sectional curvature, as, in this case, the second fundamental form is a Codazzi tensor (Sec-
tion5). Finally (Sectiorg), given a calibrated complex structuren E, we associate tdtwo
Lagrangian subbundlek;, Lo; we prove thaf is integrable if and only if the sets of smooth
sections of_; andL; are closed under the bracketBdefined by the Riemannian metric on
M defined by. In particular this remark insert our study in the context of Lie algebr@Hs

2. The geometry of TM & T*M

Let M be a smooth manifold of real dimensianin this section we introduce the basic
properties of the geometry @M & T*M and some concept of generalized geometry from
[2,6].

LetE = TM & T*M, sections o are elementX + & € C®°(E), whereX € C*°(TM)
is a vector field ang € C*°(T*M) is a 1— form. E is equipped with a natural symplectic
structure:

(X487 +1) = —(6(1) — n() )
and a natural indefinite metric:
(X+6 ¥+ 0) 1= —2(E0) +1(X) @

{,) is non degenerate and of signatuiex).
The Courant bracket is defined on section& diy

[X+6 ¥+ 1l = [X, Y]+ Ly — L& + SdE(Y) — n(x). @
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whereL denotes Lie derivative d is the differential operatod §n] denotes the Lie bracket
of vector fields oveM.

Now we recall some facts froif2,6].

A Dirac structure onM is a maximal isotropic subbundlg of E (with respect
to (,)) such that the set of sections @ C*°(L), is closed under the Courant
bracket.

Examples of Dirac structures are given by symplectic manifalds«f), namelyL =
graph) satisfies the condition of Dirac structure.

A generalized complex structure on a reatdmensional manifold is a maximal
isotropic subbundlé. of E ® C such thatL. N L = {0} and C*°(L) is closed under the
Courant bracket.

Equivalently, a generalized complex structure can be defined as a complex stiucture
on E whichis(, ) — orthogonal and such that the generalized Nijenhuis tensbdefined
by the Courant bracket is 0. This integrability condition means thai-the eigenbundles
L, L of J must be closed under the Courant bracket.

Examples of generalized complex structures are given by symplectic manifé)ds) (
where, in block matrix form is

0 -l
J:(w 0) (4)

and by complex manifolds\{, J), where

=7 ° 5
“\o - ®)

with J*(§)(Y) := &(JY).

3. Calibrated complex structures on TM & T*M

Starting from the point of view of generalized geometry introduced at the end of previous
section we study complex structurésn E which ae (, ) —calibrated, that is, such that,
forall o, 7, v € C*°(E), v # 0, the following conditions hold:

(Jo, Jr) = (0, T) (6)
(v, Jv) > 0. (7

Let ¢ be a Riemannian metric o, g defines, in a natural way, a complex structuge
onE by

To(X +8) 1= —g (&) + 2(X) (8)
whereg : TM — T*M is the bemolle musical isomorphism defined by
g(X)(Y) := g(X, Y). )

We have immediately the following:
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Lemma 1. J, is (, ) —calibrated.

On the other hand, given a complex structéi@n E, (, ) —calibrated, we can define a
Riemannian metric oM by

o(X, Y) = 2(X, J(Y)). (10)

We are interested in to investigate relationship between Riemannian metrié¢sand
(,) —calibrated complex structures @n

LetJ : E — E bea(,)—calibrated complex structur&can be written in block matrix
form as

J1
J=|["t 72 (11)
J3 s
whereJ, : TM — TM, Jo : T*M — TM, J3: TM — T*M, Js: T*M — T*M.

o I
Written (, ) in theblock matrix form( 0) and written down the conditions:

J2=—1
LND=C). (12)
,J)>0

a direct computation gives the following:

J1 J
Lemma2. J = ( Jl JZ ) is (, ) —calibrated if and only if the following conditions hold:
3 4
J3 = Jék
J3>0
Ja = —Jj_k
J3J1 = J{J3 (13)

Jo=—J3M I+ (IH?)

J J.
3 4 > 0.
—-J1 —J

Thus a (, ) -ealibrated complex structuseon E can be written in the block matrix form:

H —g I+ (H*)
g —H*

(14)

whereH : TM — TM is a g-symmetric operatord* : T*M — T*M is the dual opera-
tor of H defined byH*(§)(X) := £&(H(X)), andg : TM — T*M is the bemolle musical
isomorphism of the Riemannian metgon M defined byg(X, Y) := 2(X, JY).
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O H
Let H be a matrix of typen x n, we form the 2 x 2n matrix 0 0), then is

!l H

o I
FromLemma 2we get the following:

expH) =

Proposition 3. J is a ( , ) — calibrated complex structure on E if and only if there
exist a Riemannian metric g on M and a g-symmetric operator H on TM such that
J = exp(Hg1)J, exp(~Hg™Y).

, o —gt
Proof. J, has the block matrix for and

(H —g—1(1+(H*)2)> :<1 Hg_1> (0 —g_1> (1 —Hg_l> (15)
g —H* o I g O 0 I

then we have the statement[]
Previous results can be restated by the following:
Proposition 4. There is a 1-1 correspondence between Riemannian metrics on M and
classes of (|, ) —calibrated structures on E, described by
gem[J®) ={J E— E|J = exp(Hg_l)Jg exp(—Hg 1)} (16)
Equivalently:
Proposition 5. There is a 1-1 correspondence between ( , ) — calibrated structures on E

and Riemannian metrics g on M with a fixed g-symmetric operator, H, on TM.

Jes(g, H). a7)

4. Integrability

In this section, we fix a Riemannian metgcon M then, by using the Levi Civita
connection associated g we introduce a bracket on sections fofand we define the
concept of integrability of complex structuresmf

Let (M, g) be a Riemannian manifold and Fétbe the Levi Civita connectiorV defines
a bracket orE in the following way:

[X+&Y +nlv:=[X, Y]+ Vxn— Vyé (18)

whee [, ]is the Liebracket of vector fields o.
We have the following:
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Lemma 6. [, ]v satisfies the following properties: for all X, Y € C*°(TM), for all &, n €
C>®(T*M) and for all f € C*°(M)

LIX+EY+nlv=—[Y+nX+Ev,
2. [f(X+8).Y +nlv=fIX+&Y +nlv — Y(/)X + &), moreover
3. Jacobi identity holds for [, |v if and only if the curvature, R, of V vanishes.

Proof.

1. is evident;

2. [f(X+8),Y +nlv=[fX, Y]+ Vxn— Vyfe = fIX, Y] = Y(f)X + fVxn —
Y(f)é — fVvé = f[X, Y] + Vxn — Vyé} = Y()(X + §);

B ([X+&EY+nv, Z+ v+ MY +n. Z+¢v, X +Elv+[Z+ ¢ X +&]lv, YV +
nlv = [[X. Y], Z] + Vix.vyj¢ — VzVxn + VzVyE +[[Y. Z], X] + Viy 7€ —
VxVyl+ VxVzn+[[Z, X], Y] + Viz xjn — VyVzE + VyVx{ = —R(X, Y){ —
R(Z, X)n — R(Y, 2)§ = —{¢(R(X, Y))) + n(R(Z, X)-) + &(R(Y, Z)-)}. O

Now remember that given a complex structuren E the +i — eigenbundles af are
subbundles of ® C and the projection operatorB,., P, are defined by

1
Py = E(l FilJ). (19)
We pose the following:

Definition 7. J is integrable if and only if its eigenbundles are involutive with respect to
[,]v, thatisif and only if for allo, T € C*°(E) we have:

Pz[P+(0), P+(7)]lv = 0. (20)

We have:

Lemma 8. Let J be a complex structure on E and let

N(J) : C®°(E) x C*°(E) - C*™(E) (21)
defined by
N(J)(o, 7) := [Jo, Jtly — J[Jo, t]v — J[o, Jt]v — [0, ]y (22)

forallo, T € C*°(E); N(J) is an antisymmetric tensor which is called generalized Nijenhuis
tensor.

Proof. Leto =X+ &, 1=Y +ne C®°(E) and letf € C*®°(M), denotedp : E — TM
the map defined by(X + &) = X, we have:

N()(fo, 7) = [Jfo, Jt]v — J[Jfo, t]lv — J[ fo, Jt]v — [ fo, T]v
= fN(J)(o; 1) = p(JT)(f)Jo + J(p())(f)Jo + J(p(JD))(f)o
+o(1)(f)o = fN(J)(o, 1);

the antisymmetric property follows from the antisymmetry of the brackéil
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The following holds:
Lemma 9. P[Ps(0), P+(7)]lv = —3 Pr(N(J)(a; 7)).

Proof. We have:

1
Px[Ps(0), P(7)]v = E{[Pi(o)’ P+(7)lv £iJ[P+(0), P+(7)]v}
= %{[o FiJo,tFiJtlv £iJ[lo FiJo, T FiJt]v}

1
= é{[o, tlv FilJo, t]v Fi[o, JT]v — [Jo, JT]v}

j;%i{][o, tlv FiJlJo, tlv FiJ[o, Jr]v — J[Jo, JT]v}
:_gmnmaiwmnma)
1
= -3P:(VU)@ 7). O

Then we get:

Corollary 10. J is integrable if and only if N(J) = 0.

Before to investigate integrability conditions we recall the following definifidn
Definition 11. A symmetric two tensor field on a Riemannian manifold\{, g) will be
called a Codazzi tensor kf satisfies the Codazzi equation:

(Vxh)(Y, Z) = (Vyh)(X, Z) (23)
for all X, Y, Z tangent vectors.

In the following we will identify the endomorphisni$ and H? of TM with the corre-
sponding (20) — tensors: andi? defined, respectively, by

h(X,Y)=g(H(X),Y) (24)
and
W*(X.Y) = g(H(X). Y). (25)

In particular we say thaf andH? are Codazzi tensors if and onlyifind:? are Codazzi
tensors.
We have immediately the following:

Lemma 12. H is a Codazzi tensor if and only if:

(VxH)Y — (VyH)X = 0. (26)
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Let J € [J(®)], from (14), we have:

[J(X +6) = H(X) — g (I + (H"))¢ + g(X) - H*¢

(27)
for someg-symmetric operatoH : TM — TM and we get:

Proposition 13. N(J)(X, Y) € C®°(TM) for all X,Y € C°(TM) if and only if H is a
Codazzi tensor.

Proof. LetX, Y € C°°(TM), denote:
NN)X,Y)=Z+¢

whereZ € C*°(TM) and¢ € C*°(T*M), we have:
¢ = Vax8(Y) — Vu)g(X) — g[H(X), Y] — H*Vyg(X) + g[X, H(Y)]
+H*Vxg(Y) = —g{VxH(Y) = VyH(X) + HVyX — HVxY}
= —g((VxH)Y — (VyH)X)
then¢ = 0ifand only if (Vx H)Y = (Vy H)X and this gives the statement.[]
Moreover:

Proposition 14. J is integrable if and only if for all X, Y € C°°(TM) the following condi-
tions are satisfied.

{ (VxH)Y — (VyH)X =0 (28)

(VH(X)H)Y — (VH(y)H)X =0.

Proof. Let X, Y € C*(TM) let us compute:
NU)X,Y) = (VaxyH)Y—(Vuar)H)X — H(VxH)Y — (VyH)X) £ g((VxH)Y
—g(VyH)X),
NU)(X, g(Y)) = =(VxH)Y + (Vy H)X + H(Vx H)(H(Y)) + (Viz(r) H) X
— (Ve HA)Y + g(Vx H)H(Y) = (Vi H)Y,

N(JI)(g(X), 8(Y)) = H(VxH)Y) + (VxH)H(Y) — H((Vy H)X) & (Vy H)H(X)
+(VumyH)HY) — (Vaw)yH)H(X) + H(Vurx)H)Y
= (VHHE)H)X) + g(VxH)(Y) + (Vyax H)(Y) — (Vy H)(X)
— (Vizy H)(X));

then it is easily seen thav(J) = 0 if and only if the conditions in the statement are
satisfied. OJ
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Using the identity:
(VxH?)(Y) = (VxH)(H(Y)) + H(Vx H)(Y) (29)

we can restateroposition 15s in the following:

Proposition 15. J is integrable if and only if for all X, Y € C*®°(TM) the following condi-
tions are satisfied.

{ (VxH)Y — (VyH)X =0
(VxH2Y = (VyH?)X =0 (30)

In particular we get:

Proposition 16. J is integrable if and only if H an H? are Codazzi tensors.

5. Examples

In this section we will describe some examples.

5.1. The case of R"

Let us consider the case Bf' with the standard flat Riemannian metrig, It is well
known[4] that a symmetric (20) —tensorf, on (R", g,) is a Codazzi tensor if and only if
there existsf € C*°(R") such that

h = Hess(f). (31)

Then, givenf € C*°(R"), h = Hess(f) defines an integrable complex structure- Jy
on TR" @ T*R", as described iff27), if and only if we havei? = Hess) for some
¢ € C®°(R"), thatis if and only if, forany, j =1, ..., n, it results:

Yo _~ PF PF (32)
0x;0x ] 0x; 00X, 8xk8x]~'

This remark allows us to write down explicitly a lot of examples of non parallgiat
define integrable calibrated complex structurgson E.

For sake of simplicity, in the following, we will consider the case- 2 and we will
illustrate two examples.

As first example we have:

Proposition 17. Let

X k
f y = (ax + by) (33)
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witha,b e R, a2 +b%2 >0,k e N,k > 3,and let h = Hess(f), then the function

. (x) _ K2k — 1P + 1Y)

2k—2
y 26— 2% —3) (ax + by) (34)

satisfies the condition: h? = Hessp).

Proof. Letx, y be coordinates oR?, ¢ is a solution of following equations:

2¢ (82f)2 <82f>2
w2 \a2) T ooy
Pp  Pf (0Pf S
ity = sy 2+ %) %)
Po_(PIV L (FrY
ay2  \ 9y? 0xdy
that is
¥ 22,2, ,2 2(k—2)
P (k(k — 1))*a“(a® + b*)(ax + by)
¥¢ 2 .2, 42 2(k—2)
Sy (k(k — 1))°ab(a® + b°)(ax + by) : (36)
¥ 2,2, 2, 12 2(k—2)
= (k(k — 1))*b“(a” + b")(ax + by)

Integrating twice each equation and comparing, wepget [

As second example we have:

Proposition 18. Let
X
f (y) = axd + bxzy + cxy2 + dy3 (37)

where a, b, ¢, d € R, then h = Hess(f) defines an integrable calibrated complex structure
on TR? & T*R? if and only if a, b, c, d satisfy the following condition:
b? + ¢® — 3ac — 3bd = 0. (38)

In this case the function:

b2
) <x> = <3a2 + > Xt 2(b2 + cz)xzy2 + 4b (a + E) x3y
y 3 3

b 2
+ac <d + 3) yix + <3d2 + ;) v (39)

satisfies the condition h? = Hessp).
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Proof. In this case is a solution of following equations:

32
gﬁ = 4(%? + b2)x? + 4(b? + ?)y? + 8b(3a + c)xy
827(1) — 2 2 2 2
Py = 4b3a + c)x + 4e(b + 3d)y” + 4(° + 3db + 3ac + ¢)xy . (40)
Xoy
52
% = 4(9d? + ¢?)y? + 4(b% + ¢*)x? + 8¢(3d + b)xy
Then the compatibility condition:
33 33
o _ %P (41)
0x23y  dxdydx
gives immediately:
b? + ¢? — 3ac — 3bd = 0. (42)

On the other hand, integrating directly previous equations with this condition, we
getp. O

5.2. Submanifolds
Let (M, g) and (i, ) be Riemannian manifolds and I¢t: M — M be an isometric

immersion; letv andV be the Levi Civita connection gf andg, respectively, the second
fundamental formi, of the immersion is defined on tangent vector fieXds’, overM by

VxY = VxY + h(X, Y). (43)
Let v be a vector field of the normal bundld/+, let H, : TM — TM defined by
g(Hy(X), (¥)) = g(h(X, Y), v) (44)

for all X, Y vector fields offM, H, is ag-symmetric operator ofiM called shape operator.

From Codazzi equatiori3,7], it follows that if # has constant Riemannian sectional
curvature therfd,, is a Codazzi tensor.

In particular the shape operator for totally geodesic or totally umbilic submanifolds gives
examples of integrable calibrated complex structureg.on

The Euclidean sphei®¥ ¢ R"*1 provides an example and, using results f{@pwe get
that the shape operator of the Euclidean spS&résometrically embedded as hypersurface
of an elliptic or a hyperbolic space, gives too an integrable complex structute on

In the caseéM is a hypersurface dk"*1, denotedd = H,,, the following holds:

Ricci(X, Y) = (traceH)g(H(X), Y) — g(H(X), H(Y)). (45)

In particular, the operator ofiVf representing the third fundamental forf?, is given
by

H? = (traceH)H — S (46)

whereS is the operator offM representing the Ricci tensor.
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This equation can be used to produce examples of integrable structufes on

6. Lie algebroids

In this section, we define two Lagrangian subbundle&,ofissociated to a calibrated
complex structure; we prove thatin the case the structure isintegrable they are Lie algebroids.
Let (M, g) be a Riemannian manifold, let: TM — T*M be the bemolle isomorphism,
let H be ag-symmetric operator ofiM and let/ = Jy € [J(®)] be the associated calibrated
complex structure oft. We define:

Ly = graphg + gH) (47)
and

Lo, = graphg + gH?). (48)

We have the following:

Lemma 19. L; andLj are Lagrangian subbundles of E.
Proof. Leto, T be sections ol.1, we can write:

o = X + g(X) + g(H(X)) (49)
and

=Y+ g(Y) + g(H(Y)) (50)
with X, Y € C*°(TM). We have:

(0.7) = —%(g(X) + g(HXON(Y) — (8(Y) + g(H(Y))(X)) (51)
(0,7) = —%(g(X, Y) + g(H(X), Y) — g(¥, X) — g(H(Y), X)) (52)
(o,7)=0. (53)

Analogously for sections af2, namely we have:
(X + g(X) + g(H*(X)), ¥ + g(¥) + g(H*(Y))) = 0 (54)
and thus the proof is complete.

Now let V be the Levi Civita connection ¢f and let [, v be the bracket o defined
in Section4, denote byC*°(L;) the set of smooth sections &f, i = 1, 2, we have the
following:

Proposition 20. Let o, T € C*°(L1), then [0, t]v € C*°(L1) if and only if H is a Codazzi
tensor.
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Proof. Let us compute:
[o. Tlv = [X + g(X) + g(H(X)), Y + g(Y) + g(H(Y))]v
=[X, Y]+ (X, Y]) + g(H[X, Y]) + (Vx H)(Y) — (Vy H)(X)

then
[0, T]v € C*°(Lq) if ad only if (VxH)(Y) — (VyH)(X) = 0,
which is the statement. [J

Analogously forLo, we get:

Proposition 21. Let o, T € C®(L3), then [0, t]y € C®°(L2) if and only if H? is a Codazzi
tensor.

Proof. Repeat previous computation substitutiigto H. O

In particular previous results can be restated as in the following:

Proposition 22. C°°(L1) and C*°(L3) are closed with respect to [ , |v if and only if J is
integrable.

We recall the definition of Lie algebroid:

Definition 23. A Lie algebroid on a smooth manifold/ is a vector bundlé& overM such
that: a Lie bracket[ , ], is defined onC*°(L), a smooth bundle map: L — TM, called
anchor, is defined and, for all, T € C*°(L), for all f € C*°(M), the following conditions
hold:

p([o, 7]) = [o(0), p(7)] (55)
[fo. 7] = f([o. 7]) = (p(D)(f)e: (56)

Using previous notations fo, g), J, L1, L2, we have the following:

Proposition 24. [fJ is an integrable calibrated complex structure on E then L1 and Ly are
Lie algebroids.

Proof. Let[, ] =], Jvandleto: L; — TM,i = 1, 2, be the projection defined by
p(X +g(X) + gH' (X)) := X, (57)

from Lemma 6 it is enough to verify that Jacobi identity holds for

[, Ivic=w-
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Foro, 7, v € C*°(E), we denote:

Jacg, 7, v) := [[o; 7]y, v]v + [[7. v]v, olv + [[v, o]V, T]v, (58)
for X,Y,Z € C®(TM) is

Jacl, Y, Z) := [[X, Y], Z] +[[¥. Z], X] +[[Z, X], Y] = O (59)

Bianchi(X, ¥, Z) := R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = O; (60)

then, forg, 7, v € C*°(L;), we have:
Jace, 7, v) = Jac(X, Y, Z) + g(Bianchi(X, ¥, Z) + R(X, Y)H'(Z)
+ R(Y, Z)H'(X) + R(Z, X)H'(Y))
—g{R(X, Y)H'(Z) + R(Y, Z)H'(X) + R(Z, X)H'(Y)}
—g(Vx(VyH')(Z) — (VZH')(Y)) + Vy(VZH')(X) — (Vx H')(Z))
+ Vz((VxH)(Y) — (Vy H)(X)) + (Vx H')(Vy Z — VzY)
— (Vix g H)(X)) + =(Vy H)(Vx Z — V2 X) = (Vix. 21 H)(Y))
+ ((VZH)(VyX — VxY) — (Vir.x H')(2))
— H(Bianchi(X, Y, Z))),

then the statement follows froRroposition 16 [
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